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The behaviour of fibre suspensions in dilute polymer solutions at high Deborah 
numbers is analysed. In particular, we calculate the change to the extension of the 
polymers and the orientation of the fibres caused by hydrodynamic interactions 
between the polymers and the fibres. At a sufficiently high Deborah number the 
combined effect of the fibre velocity disturbances and the mean shear flow produce a 
dramatic increase in the extension of the polymers, similar to the coil-stretch transition 
observed in extensional flow. 

The non-Newtonian stresses caused by the polymers produce a perturbation to the 
angular velocity of the fibres, giving rise to a net drift across Jeffery orbits towards the 
vorticity axis. Unlike the second-order-fluid analysis of Leal (1979, this effect does not 
depend on the second-normal-stress difference. 

1. Introduction 
The shear-flow behaviour of fibre suspensions in Newtonian fluids has been an active 

area of research dating back to Jeffery’s (1922) calculation of the orbit of an ellipsoidal 
particle in a linear flow. However, in many practical applications, such as injection 
moulding, the suspending fluid is viscoelastic. In this paper we investigate the case 
when the suspending fluid is a dilute polymer solution at shear rates which are large 
compared to the relaxation rate of the polymer (i.e. high Deborah numbers). 

At high Deborah numbers the addition of small amounts of polymer to a Newtonian 
fluid can produce a large increase in the viscosity measured in an extensional flow. 
However, in simple shear flow the increase in viscosity is very much smaller. Similarly, 
the addition of fibres to a Newtonian fluid produces a much smaller increase in the 
shear viscosity compared to the increase in extensional viscosity of the suspension. A 
question arises as to what happens to the shear viscosity of a mixture of both fibres and 
polymers. If the fibres and polymers behave independently then we would expect only 
a small change in the viscosity of the suspension. On the other hand, it is possible that 
there may be interactions between the fibres and the polymers which give rise to a much 
larger increase in viscosity. 

In an extensional flow the polymers stretch parallel to the extensional axis, so that 
the velocity difference across the molecule, and consequently the stretching force, 
increase as it extends. By contrast, in shear flow the polymer molecules stretch in the 
flow direction, perpendicular to the velocity gradient, and so the velocity difference 
across a molecule remains small. In a fibre suspension the polymers no longer 
experience purely simple shear flow, because of disturbances produced by the fibres. If 
the effect of these disturbances is to rotate the polymers away from alignment with the 
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FIGURE 1. Sketch of an elastic dumbbell. 

flow direction, then the shear flow can stretch them further. In $2 we use the method of 
averaged equations to calculate the average extension of a polymer molecule in a 
random suspension of fibres undergoing simple shear. 

The analysis is based on the method used by Shaqfeh & Koch (1988 a, b) to study the 
alignment of an axisymmetric particle flowing through a random fixed bed. Their 
predictions of particle orientations have been verified by light scattering measurements 
(Frattini et al. 1991). In a recent paper, Shaqfeh & Koch (1992), applied this technique 
to polymer solutions flowing through a random fixed bed of fibres or spheres. Above 
a critical flow rate, the polymers become highly extended, causing an increase in the 
resistance to flow. Experimental measurements of flow through fixed beds (e.g. James 
& MacClaren 1975) find a significant increase in flow resistance when a small 
concentration of polymer is added to a Newtonian fluid. 

The orientation of an isolated fibre in Newtonian fluid follows one of a family of 
closed curves called Jeffery orbits (Jeffery 1922), depending on its initial orientation. 
The distribution of a suspension of fibres between different Jeffery orbits cannot be 
found from the motion of an isolated fibre, but depends on secondary effects such as 
interactions between fibres. In the case of a weakly non-Newtonian fluid, the non- 
Newtonian stresses are expected to perturb the Jeffery rotation and may cause the 
fibres to drift between Jeffery orbits. Experimental observations of the motion of fibres 
in polymer solutions (Bartram, Goldsmith & Mason 1975) find that the fibres in 
general drift towards an alignment parallel the vorticity axis. For low Deborah 
numbers, Leal (1975) calculated the perturbation to Jeffery orbits for a second-order 
fluid. His analysis predicts a drift towards the vorticity axis for fluids with a second- 
normal-stress difference, in qualitative agreement with experiment. However, Iso, 
Koch & Cohen (1993) observe that fibres also drift towards the vorticity axis in 
polyisobutylene Boger fluids (Boger 1977), which have zero second-normal-stress 
differences (Magda et al. 1991). In $ 3  we show that at high Deborah numbers fibres 
drift towards the vorticity axis due to a mechanism which is independent of the second- 
normal-stress difference. 

Throughout this paper n denotes the number density of fibres and 1 the fibre half- 
length. The fibre aspect ratio r ,  is assumed to be large so that results of slender-body 
theory (Batchelor 1970) can be used. Our analysis is performed first for the dilute limit 
(n13 4 l),  and then extended to semi-dilute suspensions (1 < n13 @ r )  in 52.6. The 
extension to semi-dilute is important because it is in this limit that the largest effect on 
the polymer stress is to be found. 

Cartesian coordinates (x, y ,  z )  are defined such that 1 (or i) is flow direction, 2 the 
gradient direction and 3 the axis of vorticity, and in these coordinates the unperturbed 
shear flow is given by 

u* = (YY, 050). (1) 
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2. Polymer conformation 
2.1. Polymer model 

The distortion of a polymer molecule by the flow is modelled as the extension of an 
elastic dumbbell consisting of two beads joined by an elastic spring (Kuhn & Kuhn 
1945). This represents the gross distortion of the molecule in terms of a single vector 
R* (see figure l), the bead separation. The simplest model employs a linear (Hookean) 
spring and constant hydrodynamic friction, for which the evolution of R* is given by 

where K is the relaxation rate of the polymer. The probability distribution P(x*, R*) 
obeys the conservation equation 

ap 
at* 
-+ U* - V*P+ V,, - (R*P)-2Dm V$ P = 0, (3) 

where D, is the bead diffusivity. Here we assume that the Peclet number is large so that 
diffusion of the dumbbell's centre of mass can be neglected. 

At this point it is useful to introduce dimensionless variables by scaling lengths with 
the fibre half-length, 1, and time derivatives with the shear-rate y. The polymer 
extension R is scaled on its equilibrium value in zero flow so that 

The Deborah number, D is defined to be 
R* = R(~D,/K)~,  x* = XI,  and t* = y-lt. (4) 

D = Y / K .  ( 5 )  
In dimensionless variables (2) becomes 

R = R * VU-(l/D) R. 

This model has the correct behaviour for small distortions, but behaves unphysically 
in extensional flows with D > 1 (see Rallison & Hinch 1988). This can be remedied by 
using a finitely extensible nonlinear elastic (FENE) spring law (Warner 1972), which 
prevents the dumbbell from extending beyond a maximum length R,. For this model 
1/D in (6) is replaced by theXJR1)ID where 

In the following subsection we will develop the theory using the linear model and 
discuss the modifications for the FENE model in $2.4. 

2.2. Polymers in a jibre suspension 
We now seek the average extension of a polymer in a dilute suspension of fibres 
undergoing simple shear flow. The polymer is assumed to be sufficiently dilute that it 
does not affect the dynamics. Therefore, strictly speaking our results are valid only for 
extremely low polymer concentrations when the solution is effectively Newtonian, but 
it is hoped that the results remain valid, at least qualitatively, at higher concentrations. 

For a homogeneous suspension it suffices to determine the polymer conformation 
distribution at a single point in space. We define the joint probability density function 
for the extension of the polymer, R, at the origin and the positions, xi ,  and 
orientations, pi ,  of the fibres to be 

P(R, ~ 1 3 ~ 1 ,  . . ., x N , P N ,  t), 
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which satisfies the conservation equation 
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(8) 
ap 1 
- + + [ v , , . ( ~ i P ) + v ~ i . ( I j i P ) ] + v R . ( ~ P ) - - v ~ P =  D 0. 
at  i=l 

We will use two different forms of ensemble average; the first, denoted by ( ),,, 

Q P ( R , x ~ , P ~ , . . . , ~ ) ,  (9) 

is the average over positions and orientations of all of the fibres; and ( )1 

represents the conditional average with a fibre at position x and orientation p .  
In order to proceed with the analysis we need to make a number of simplifying 

assumptions. First, the disturbance caused by the entire suspension of fibres is 
approximated as the sum of disturbances caused by each individual fibre in the absence 
of the other fibres (i.e. we neglect fibre-fibre interactions). This approximation involves 
errors of order (n13)2. Second, we assume that the dominant contribution of the fibres 
to the mean extension of the polymer comes from fibres at distances of the order of a 
fibre length from the polymer. Each interaction causes only a small disturbance to the 
flow at the origin of order l/log (r), but the combined effect of a large number of such 
interactions has a significant effect on the extension of the polymer. A fibre which 
passes within a fibre radius of the polymer will produce a large disturbance, and may 
cause a large extension of the polymer in a single interaction. However, the probability 
that a fibre will pass that close to the origin is n13/r2 which is negligible for fibres of high 
aspect ratio. Furthermore, in the neighbourhood of a fibre the relative flow is parallel 
to the fibre and so the effect of close interactions is less important here than in the case 
of a fixed bed considered by Shaqfeh & Koch (1992). Third, we assume that the 
Deborah number is large so that the relaxation of the polymer can be ignored during 
an interaction with a fibre. However, the effect of relaxation between interactions is 
included. 

It is convenient to express the velocity u as 

u = u, + uf, (1 1) 

where u, = (y, 0,O) is the unperturbed shear flow and ur is the perturbation caused by 
the fibres, which is smaller by a factor of l/log (r) than the mean flow. Since uf is small, 
at leading order the joint probability density function, P, will be equal to the 
uncorrelated distribution for the polymer and the fibres, 

where Q(R) = (P), is the probability distribution for the extension of the polymer and 
g(p) is the orientation distribution of a fibre in shear flow. 

For a dilute suspension of fibres the leading-order contribution to the correlated 
distribution comes from correlations between a single fibre and the polymer. Thus we 
may approximate P' = P-P, in the form 

N 13 N 1 3  
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where ( 1 3 /  V) Q(R)g@) +Q,(R, x , p )  = (P), is the joint probability density for a fibre 
and a polymer. This expression for P' neglects correlations involving more than one 
fibre which are of order n13 smaller. 

Integrating (8) over xi and pi, and using the expression for P given by (12) and (13), 
we obtain 

aQ 1 
--_ [VR ' (RQ) + ViQ]  + VR * ( R  * v (u) ,  Q) 
at D 

=-n13V,. R .  d 3 x d ~ V ( ~ f ) 1 Q l  . (14) 

To close this system we need a second equation for O,, which is obtained by taking the 
one-particle conditional average of (8) and subtracting n13g(p) x equation (14), which 
yields 

( S  1 

aQ1 1 
at - + v * ((u>o Q,) + VP - ( (P)o  Ql) -5 P, * (RQl) + V 3 4 l  

+VR*(R*V(u)oSZ1) =-g(p)V,.(R*V(uf)1Q). (15) 

Since the velocity disturbance uf is small compared to the shear flow, the average 
rotation rate of the fibre ( p ) o  is equal to the Jeffery rotation rate at this approximation. 

The time taken for the fibre to pass the polymer is of order unity, and so the change 
in the extension of the polymer caused by a single interaction is of order l/log (r) .  The 
terms 

correspond to the relaxation of the polymer during the time of the interaction and may 
be neglected provided that D % log(r). 

(l/D) LVR ' ( R a l )  + vi 

The term 
V R  * (R * V ( U ) ~  Q,) = R, aQ,/aR, 

represents the stretching of the polymer by the shear flow. During the time of an 
interaction, the shear flow changes R, by an amount of order R,. We shall see later that 
R, is or order 1/D smaller than R, and so the relative change is only of order 1/D. Thus 
this term may also be neglected for D % log(r). 

Thus in the limit when D 9 log(r) the steady-state value of SZ, satisfies 

yi3Q,/ax+Vp (pa,) = -g(p)VR - ( R  - V(uf),Q)+O(nZ3,10g(r)/D). (16) 

The terms on the left-hand side of (16) represents convection of the disturbance SZ, 
along a fibre trajectory, and can be rewritten in the form 

where s is the x-coordinate of the fibre position along the trajectory, and the integrating 
factor, w ,  is given by 

(1 8) o = JdsVp . p .  

Integrating along a fibre trajectory, we find 

1 rz 



192 

Substituting this expression of R, in (14) and noting from continuity that V (uf), = 0, 
we obtain 
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(20) 
a52 1 
-+VR 
at D 

( R  .V(u)oSz)--Vv, * (RR)+VR + (d * VRR) = 0, 

where the anisotropic diffusivity d contains two terms: an isotropic term from the 
Brownian diffusion of the beads, and a second anisotropic term due to the fibres. 

dik = (1/D)Sik+n13MijklRiRI. (21) 

Here, we have used Einstein's suffix notation for clarity. The tensor Mijk ,  is essentially 
a correlation of the velocity gradient perturbation along a fibre trajectory, 

Equation (20) involves errors of order ( t ~ l ~ ) ~  and (nL3 log ( r ) / D ) .  Calculation of the 
tensor Mijkl is left until 82.5. For a dilute suspension of fibres the largest contribution 
to the integral comes from the l / r  fraction of fibres which are at an angle of order unity 
from the flow-vorticity (1,3)-plane. The velocity disturbances produced by these fibres 
are of order l/log(r), and so Mijkl  will be of order l/rlog'(r). 

We define A to be the second-moment tensor 

A = d3R P(R) RR, (23) s 
and taking the ensemble average 

( A ) ,  = sd3R R(R) RR, 

multiplying (20) by RR and integrating over R ,  we obtain a closed equation for (A)o .  
At steady state (A), satisfies 

< A , k j ) O  ak(ui)O + ( A i k ) O  ak(uj>O -(2/D)(<Aij)0 -S i j>  

= -n13[(Mikjm + Mjkim) ( A k m ) O  + Mkmik(Amj)O + Mkmjk<Aim)Ol' (25) 

This set of six coupled linear equations could be solved for general D, but we will 
instead examine the limit of large D when the largest terms on the right-hand side are 
of order n13D3. Neglecting smaller terms and noting that ( u ) ,  = u,, the 11, 12 and 22 
components of (25) are respectively 

(26) 

D(Al,), - ( 4 J O  + 1 = 09 
D(A,,)O - 2<A,,)o = 0, 

- (Azz)o + 1 x -Dn13M21z1(A11)o, 
with solution 

D2 D 2 
2 - D3n13M,,,, ' 2 - D3nPM2,,, ' > ( 4 2 ) o  = = 2 - D3nPM,,,, 

(27) 

(For a dilute suspension of fibres we will find (equation (51)), that M,,,, = 
0.038/r log' (Y).) 
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FIGURE 2.  The polymer contribution to the shear viscosity, 2(Al , ) , /D ,  as a function of Deborah 
number at various fibre concentrations: -, d 3  = 0 ;  ---, n13M2,,, = 0.001 ; . . . . . ., nl3M,,,, = 0.01. 

The average stress within the suspension is equal to the sum of the solvent stress and 
the stresses exerted by the fibres and the polymers. The contribution from the fibres is 
of order n13/r times the solvent stress and is, therefore, negligible. For a concentration 
of np dumbbells per unit volume of bead radius R,, the polymeric stress is given by 

up = ( 2 c / D )  @)o, (28) 

where c = np nRi is a measure of the volume concentration of dumbbells. The effective 
shear viscosity of the suspension is therefore given by 

Pshear = +(2c /D)  (A1!2)O* 

In the absence of fibres ( A 1 2 ) o / D  is equal to 0.5, and so the shear viscosity is constant. 
With the addition of fibres, the viscosity increases with Deborah number as 

This increase is illustrated in figure 2 which shows the variation in the polymer 
contribution to the shear viscosity, 2 ( A l , ) , / D  (= bshear - l ) / c ) ,  with Deborah number. 

The first- and second-normal-stress differences are respectively 

At a critical Deborah number of 

Dcrit = ( 2 / n 1 3 ~ 2 1 2 ~ P  

the dumbbells become infinitely extended and the viscosity and normal stresses become 
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infinite. Although this behaviour is obviously unrealistic and may be corrected by 
changing to an FENE dumbbell model (see §2.4), the critical Deborah number marks 
the transition of the polymer from a coiled to a highly extended configuration, and 
corresponds to the onset of strongly non-Newtonian behaviour. For a dilute suspension 
of fibres the critical Deborah number is 

and will in practice be quite large, since n13/r < 1 .  
The above results are for steady state, but we can also estimate the time required for 

unextended polymers to become extended. In a pure shear flow, fluid elements separate 
algebraically 
linearly with 
is 

in time and so the extension of the dumbbell increases approximately 
time. In a sheared fibre suspension, the time-dependent version of (26) 

At high Deborah numbers we may neglect terms of order 1/D,  in which case (All),, 
increases exponentially in time as 

(A11)o = exP [(4n13M~~,$)  4. (31) 

Hence, the dumbbells stretch in a time of order DCrit/y. 

2.3. Physical mechanism 
A coil-stretch transition of this kind occurs in the absence of fibres in linear flows 
where the extension rate is greater than the rate of rotation, but not in simple shear 
flow. Simple shear is the special case where the extension rate and rotation rate are 
equal, and the rotation is just sufficient to prevent the extensional component of the 
flow from stretching the polymer. The velocity perturbations caused by the fibres affect 
this balance between extension and rotation in such a way that the extensional 
component of the flow is able to produce a catastrophic increase in the extension of the 
dumbbell. 

For flow through a fixed bed, Shaqfeh & Koch (1992) show that the velocity 
disturbances caused by the fibres produce a coil-stretch transition at a critical Deborah 
number dependent on the fibre density. The mean flow through the bed is uniform and 
so it does not contribute to the extension of the dumbbells, but merely convects them 
through the bed. Conversely, in a sheared suspension of fibres the mean shear flow has 
an extensional component and so it is possible for there to be a coupling between the 
fibre disturbance velocity and the mean flow. 

To see how this coupling works, consider a single interaction between a fibre and a 
dumbbell which is initially extended in the flow direction, as sketched schematically in 
figure 3. As the fibre moves past the dumbbell, the velocity disturbance created by the 
fibre deflects the ends of the dumbbell from their original streamlines. The fibre rotates 
as it passes the dumbbell and so the two ends of the dumbbell experience a slightly 
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FIGURE 3. Sketch of the mechanism for stretching the dumbbell. (i, ii) The velocity disturbance caused 
by a passing fibre rotates the dumbbell in the gradient direction. (iii) The rotated dumbbell is 
stretched in the flow direction by the shear flow. 

different flow history, and in general will be displaced by different amounts from their 
original streamlines. Thus a dumbbell which was initially aligned parallel to the flow 
direction is rotated slightly in the gradient direction. The breaking of the flow 
symmetry by the rotation of the fibre is crucial to this rotation of the dumbbell, and 
would not occur for a suspension of spheres. 

As a result of the interaction, the two ends of the dumbbell now lie on different 
streamlines and consequently the mean shear flow will stretch the dumbbell in the flow 
direction. Thus the initial extension in the flow direction has been enhanced via a small 
rotation in the gradient direction caused by the fibre, which enables the shear flow to 
stretch the dumbbell. 

It is therefore the mean shear flow rather than the fibre velocity disturbance which 
is primarily responsible for stretching the dumbbells, in contrast to the case of flow 
through a fixed bed where the flow perturbations are responsible for stretching the 
dumbbells (Shaqfeh & Koch 1992). The most important effect of the additional bead 
diffusion is the relative diffusion of the ends of the dumbbell in the gradient direction. 
Consequently, it is the 22-component of d which appears in the solution for (All),. 

Between interactions the dumbbells will try to relax back to their equilibrium 
conformations. However, for a sufficiently large fibre concentration, the frequency of 
interactions will be too high for the dumbbells to have sufficient time to relax before 
the next interaction with a fibre. The feedback mechanism outlined above will then 
cause an infinite extension unless prevented by a nonlinear spring. 

2.4. FENE dumbbells 
For the linear dumbbell model, there are no steady solutions for ( A ) ,  at Deborah 
numbers above Dcrit. This singular behaviour also occurs in extensional flows and may 
be remedied by changing to a nonlinear spring which prevents the dumbbells from 
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I I I I 

Deborah number 
FIGURE 4. The polymer contribution to the shear viscosity, 2f(A, , ) , /D,  for FENE dumbbells with 
R, = 30 as a function of Deborah number at various fibre concentrations: __ , n13 = 0; 
_ _ _  , nPM,,,, = 0.001 ; . . . . . ., n/3M2121 = 0.01. 

extending beyond a finite limit. The change from linear to FENE dumbbells does not 
affect the averaging over configurations, because the relative velocity of the beads due 
to the spring force does not depend on the fibre configuration and the relaxation of the 
dumbbell is neglected during the interaction with a fibre. Thus the only change to (20) 
is to replace 1/D withf(R)/D. However, with this change it is no longer possible to 
form an exact closed equation for the second moment, (A), .  To close this system we 
use the closure approximation introduced by Peterlin (1966) in which the nonlinear 
function f(R) in (7) is approximated by f(TrA)i. With this approximation the second- 
moment equations become 

D(Ai2)n-f<Aii)n+ 1 * 0,  

D<A22)0-2f<A12)0 25 0,  
(32) 

- f < A z z ) o  + 1 * -Dn13M2121<A11)0, 

- f ( A 3 3 ) 0  + 1 -Dn13M3131<A11),,. 

In the limit when R, is large, f is approximately unity except when (All), % (A , , ) , ,  
or (A , , ) , ,  and consequently f may be approximated by 

With this approximation f is the root of the quartic equation 

2R;f4-2Rk f -D2(1 +n13M,,,, DR;) f+n13M,,, ,  D3R; = 0, (34) 
with f > 1. 

The shear viscosity of a solution of FENE dumbbells is given by 

pshear = +(2cf/D) <A12)O* 
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Deborah number 
FIGURE 5 .  The polymer contribution to the shear viscosity, 2f(A,,),/D, as a function of Deborah 
number for different values of R, with nZ3M,,,, = 0.001: -, R, = CO; ---, R, = 100; 
......, R ,  = 30. 

In the absence of fibres 2f(A1,) , /D decreases with Deborah number, so the solution 
is weakly shear-thinning. With the addition of fibres, however, it increases with 
Deborah number, as shown in figure 4 (for R ,  = 30). The effect of varying R ,  is shown 
in figure 5. For finite values of R, the shear viscosity does not become infinite, but 
asymptotes to a constant value of 

,ushear - 1 + 2 k R ~ ( n P M , , , , ) %  (35)  

at high Deborah numbers. In deriving this expression for the limiting viscosity the 
hydrodynamic stress exerted by the polymer is calculated from the drag on the beads. 
In extensional flow this method produces an incorrect scaling for the limiting viscosity 
as a function of R,. In this limit, the polymers are extended to their maximum length, 
and so behave like rigid fibres of length R,. This provides an alternative expression for 
the limiting viscosity as 

This predicts an increase in viscosity proportional to Rk rather than RL, giving a larger 
value of the limiting viscosity than equation (35) .  

2.5. MiiRL for  a dilute fibre suspension 
In the previous subsections we derived the scaling for the extra diffusivity produced by 
the fibres and discussed its implications for the extension of the polymer. However, we 
did not calculate the values of the components of the tensor Mijkl .  From (ZZ), &Itjkl 
is given by 
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It proves easier to evaluate this integral in Fourier space, and by taking the transform 
of (20) and applying the product theorem we obtain 

where z'i is the transform of the velocity disturbance, defined by 

<u,>,, (38) z'i = d3Xe-ik.x s 
and the <-integration is along a streamline in Fourier space. In Fourier space the 
streamlines of the shear flow are lines of constant k ,  and k, .  For k ,  > 0 the direction of 
motion is towards negative k ,  and for k ,  < 0 towards positive k,.  Therefore, the 
[-integration is from Oosgn(k,) to k,. The integrating factor d is now given by 

d&/d[ = Up - p .  (39) 
To proceed further we need expressions for the velocity disturbance 0, the rotation 
rate, p ,  and fibre distribution g(p). In deriving (37) we assumed that non-Newtonian 
effects are negligible, and that the rotation rate of the fibres is approximately equal to 
the Jeffery rotation rate. 

In Jeffery orbits, fibres of high aspect ratio (r % 1) spend nearly all of their orbit in 
alignments approximately perpendicular to the gradient direction, and at any one time 
only an O(l/r) fraction of the fibres are in orientations with Ip21 greater than l/r.  The 
velocity disturbance caused by an aligned fibre is smaller by a factor of l/r2 from that 
caused by a fibre with p 2  of order unity. Thus, the dominant contribution to the integral 
comes from the l / r  fraction of fibres with p z  of order unity. We will therefore only 
consider interactions with fibres with lpzl 9 1/r. 

We introduce polar coordinates in which 8 is the angle between the fibre and the flow 
direction (1) and $ is the angle between the gradient direction (2) and the projection 
of the fibre in the gradient, vorticity (2,3)-plane. This is the coordinate system used by 
Koch & Shaqfeh (1990), but differs from that used by Jeffery (1922). In this coordinate 
system the rotation rate of a fibre with (81 % l / r  at leading order in 1/r, is 

8 = -sin2Bcos$, 6 = 0, (40) 
so that $ remains constant along an orbit, and 8 varies with [ as 

cote = c o t 8 , - ~ c o s ~ ,  
nl 

where 0, is the angle of the fibre at [ = k, ,  and 

&([) = - sin3 0 cos $, (42) 
From Jeffery's solution, the fibre orientation distribution, g(P) must be of the form 

T($) 
1 

= (43) 

The function T($) depends on the distribution of fibres between Jeffery orbits. In 
general, this distribution will be affected by both interactions between the fibres and 
non-Newtonian effects. The non-Newtonian drift between Jeffery orbits is calculated 
in 53, but in the present calculation we consider the case when the polymer 
concentration is sufficiently low that T($) is determined solely by fibre interactions. In 
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this case we can use the experimental measurements of Anczurowski & Mason (1967) 
for fibres of aspect ratio 18.4 suspended in a Newtonian fluid, which have recently been 
fitted with a calculation based on a weak anisotropic rotary diffusivity (Stover, Koch 
& Cohen 1992), for which 

The best fit is obtained for S = 17. 
In a dilute fibre suspension, the velocity disturbances generated by the fibres are 

uncorrelated at leading order in n13, and so the conditionally averaged velocity 
disturbance, (up)1, can be approximated as the velocity disturbance generated by an 
isolated fibre in shear flow. This approximation produces errors of order n13/log (r)  in 
(up),. The velocity disturbance at the origin produced by a fibre at position x is given 
by slender-body theory (Batchelor 1970) as 

where 

is the Oseen tensor and 

is the force per unit length exerted by the fibre on the flow. Taking the Fourier 
transform of (45) and using the results 

we find that li is given by 

1 

dh = 2ij,(k * p ) ,  eilk .p I, 

In (46) and (47), jl = (sin x ) / x 2  - (cos x ) / x  is the first-order spherical Bessel function. 
Since li is antisymmetric in k, we can use the symmetry of the integrand in k to write 

In the special case when i = k and j = 1 the streamline integration may be performed 
by parts to give (no summation over i and]] 

M . . .  z'a3 = -__ 16x3r1,, 1 2rr: dQt T ( Q t ) r d O o L r  sinzoo -m d k l l r  lkll d k 3 [ r  -a dk2kj6,]2. (50) 

As discussed earlier (§2.2), M,,,, is of order l/rlog2 r, and integrating, (50) numerically 
using the expression for T(Qt) given in (44) we obtain 

M,,,, = 0.038 . . . x 1 /r log2 r (51) 
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M3131 = 0.12 ... x llrlog'r, 

and therefore Dcrit is equal to 

It should be noted that the numerical value obtained for M,,,, depends critically 
upon the expression for T(#), which varies with the concentration of fibres and 
polymers. In consequence the numerical value should be treated with caution. 
However, it is clear that a large Deborah number is required to produce a significant 
change in the extension of the polymer in a truly dilute suspension, because the 
frequency of interactions between rotating fibres and polymers is low. We would expect 
to find lower values of the critical Deborah number for more concentrated suspension, 
where the frequency of interactions is higher. 

2.6. Semi-dilute suspensions 
A concentration of fibres for which n13 is large compared to unity, but small compared 
to r is referred to as semi-dilute. In shear flow, the fibres continue to rotate in 
approximate Jeffery orbits (see Stover et al. 1992; Koch & Shaqfeh 1990), and 
therefore the number of density of fibres with p ,  greater than order l / r  remains n13/r, 
which is small. Hence, the concentration of rotating fibres is dilute and we may 
continue to use the dilute approximations for the rotating fibres for n13 < r .  However, 
the conditionally averaged velocity (u') ,  is no longer equal to the velocity of an 
isolated fibre in shear flow, because of the presence of fibres aligned in the flow 
direction. The orientation distribution of the fibres is determined by interactions 
between fibres and these are also different in this concentration regime. Thus Miikl 
remains given by (49), but with different expression for li and T(#). 

In experiments with semi-dilute suspensions of fibres in Newtonian fluids Stover 
et al. (1992) found that the distribution of fibres between Jeffery orbits may still be 
approximated by (44), but using much smaller values of S than for dilute suspensions. 
Stover et al. obtained a best fit for fibres of aspect ratio 3 1.9 with S equal to 2 for values 
of n13 between 0.6 and 6. The fact that S is smaller for a semi-dilute suspension than 
a dilute suspension indicates that a greater proportion of the fibres are in orbits near 
the 1,2 (flow, gradient)-plane, which should increase the effect of the fibres on the 
polymer. 

The velocity disturbance can be found from the ensemble-averaged Green's function 
for a semi-dilute suspension of aligned fibres derived by Shaqfeh & Fredrickson (1990). 
The component of li needed to calculate M,,,, is ti,, given by 

A 4xip,p, k2 u =--- 

where 

(54) 
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and j,,(x) = sin x/x is the spherical Bessel function of order zero. The screening length 
X is defined implicitly by 

x2 = 1og(rX)/8nnl3. 

The dominant contribution to the integral for Mzlzl ((50) with ti, given by (54)) comes 
from wavenumbers of order 1/X, suggesting that M,,,, should be proportional to 
X / r  log' ( rX) .  Integrating the expression for M,,,, numerically for different values of 
n13 we find that there is a logarithmic correction to this scaling, with 

M,,,, - 0.069.. . ( x ~ ~ ~ ~ ~ ( r ~ ) )  for 1 + n13 + r ,  

giving a value for the critical Deborah number of 

(55) 

Thus the critical Deborah number continues to decrease with increasing concentration 
throughout the semi-dilute regime. However, the dependence on the fibre concentration 
drops from (n13$ for a dilute suspensian to (nl3)4 due to the screening of the velocity 
disturbance by the other fibres in the suspension. 

2.1. Discussion 
The preceding analysis suggests that at shear rates above some critical value the 
polymers become significantly more extended in a fibre suspension than in polymer 
solution alone. To date, however, we know of no experimental evidence for this 
phenomenon. The most direct way to measure the extension of the polymer would be 
to measure the birefringence, but we know of no experiments of this kind on sheared 
suspensions of fibres. 

There should also be an associated rise in shear viscosity with shear rate as given by 
(35). However, this may be difficult to detect in practice for the following reasons. First, 
our analysis neglects the non-Newtonian nature of the fluid and is, therefore, strictly 
applicable only to very dilute polymer solutions where the polymer stress is small. 
Viscosity measurements of fibres suspended in polymer melts and concentrated 
solutions, which are strongly shear-thinning, find that the viscosity becomes less 
dependent on fibre concentration as the shear rate increases (see the review by Ganani 
& Powell 1985, and Kitano et al. 1988), presumably as a consequence of the 
localization of the fibre disturbance due to shear-thinning. For this reason, an increase 
in viscosity may be detectable only in Boger fluids (Boger 1977), which have constant 
shear viscosities. Second, the orientation distribution of fibres is expected to vary with 
shear rate and polymer concentration and this will affect the magnitude of the 
parameter M,,,,. There are no simultaneous measurements of shear viscosity and 
orientation distribution. For these reasons birefringence may be the best method for 
detecting this phenomenon. 

3. The effect of the polymer on the fibre motion 
In this section we consider the affect of the polymer stress on the motion of the fibres. 

The rotational velocity, p ,  of each individual fibre within a suspension in a dilute 
polymer solution may be written as the sum of three terms 

p = pJ + p P  +p'. 9 
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pJ is the Jeffery rotation rate for a fibre in shear flow, pp is the perturbation caused by 
the polymer, and p‘ is the perturbation caused by the presence of other fibres. The 
calculations in the previous section assumed that bpi < kfI < so that p was 
approximately equal to pJ and T($) was determined by pf. In this section we calculate 
jp and determine its effect on the fibre motion. 

We assume that pp and p‘ are small in comparison to 4” so that fibres rotate in 
approximate Jeffery orbits. From slender-body theory, pp for a fibre at the origin is 
given by 

P P  = 2 s  (/-PP) UP(hP) dh, (57) 
2 -1 

where up is the velocity disturbance caused by the polymer. In this limit where the non- 
Newtonian stresses are small compared to the Newtonian stresses, we can calculate up 
from a perturbation expansion, so that at leading order uP(x) is given by 

U”(X> = d3x’J(x - x’)~”(x’), J (58) 

where f ” ( x )  is the divergence of the polymeric stress at position x‘ based on the 
Newtonian velocity of a fibre in shear flow. For a solution of linear dumbbells,f” is 
given by 

(59) 

and results from gradients in the extension of the dumbbells and does not depend on 
its mean value. Consequently, it is useful to split A and the velocity u as the sum of their 
average values plus the perturbation caused by the fibre 

f” = (2c/D) V * A 

A = (A) ,+Af,  u = u,+uf. (60) 

The perturbations are of order l/log(r) smaller than the average values, and at high 
Deborah numbers the relaxation time is large compared to the time taken for a 
polymer to pass the fibre. Neglecting terms of order l/log2(r) and l/Dlog(r), the 
evolution of A‘ is approximately given by 

(D/Dt) A‘ = ( A ) ,  * VU‘ + (VU‘)~ .  (A), .  (61) 

In view of the convolution integrals in (57) and (58), it proves easier to work in 
transform space. Taking the Fourier transform of (61) we obtain 

1 
- ( ( A ) ,  kii + lik * (A) , )  dk,, 

1 

(62) A‘ = -i rz 
msgn(k,) kl 

where u is the Fourier transform of u‘, given (from (48)) by 

The change in sign is because the fibre rather than the polymer is now at the origin. 
Taking the Fourier transforms of (57), (58) and (59) we find 
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FIGURE 6. Sketch of Jeffery orbits near the flow direction. Dashed lines 
indicate the direction of p p .  

and the rotation rate of a fibre at the origin pp is given by 

From (62)-(65), the additional angular velocity p p  may be written in the form 

where B,,@) is a four-dimensional integral. This expression for j P  neglects terms that 
are of relative order l/log ( r )  and 1 / D  smaller from the approximation of Af in (61). 
There are also errors of relative order C ~ ( A ) ~ ~ / D  from neglecting the polymeric stress 
in uf. 

The value of Buk may be calculated numerically for all fibre orientations. However, 
i f j P  is small the most easily measured consequences of this perturbation come from its 
average effect over a large number of orbits. As noted previously, the fibres spend 
almost all their time in orientations perpendicular to the gradient direction, and only 
for an order 1/r  fraction of time is Ip,I > l / r .  Additionally, all Jeffery orbits pass within 
an angle of order l / r  of the flow direction and so a small drift in angle at this 
orientation will produce a large change in the subsequent motion of the fibre. For these 
reasons we expect the most significant effects of the polymer on the orientation of the 
fibre to occur when p z  is small. 

3.1. Fibre rotation when p z  is small 
If p z  is small, the rotation rate of the fibre will be small compared to the shear rate, and 
so a fibre will not rotate in the time it takes a polymer to pass. This greatly simplifies 
the calculation of p p  and analytic progress is possible. In this limit the velocity 
disturbance caused by the fibre will be linear in p z ,  and consequently j p  will be linear 
PZ. 

The path of a Jeffery orbit is symmetric in p z  (see figure 6), and therefore any 
cumulative drift in orbit must come from the 2-component, Pi. As a consequence of the 
flow symmetry, we find that the only non-zero contribution to this component is 
proportional to (A, , )o .  In this limit the expression for 92 may be greatly simplified by 
elementary algebraic manipulations. At leading order, k,, k,  and k .p are independent 
of k,, and so the k ,  integrations in (62) and (65) may be performed analytically. The 
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remaining integrals over k, and k, can be simplified by changing coordinates to 
z = k . p  and y = c0s-l [k -p/(k: + k$]. The y-integration can be performed analytically 
leaving a single integral over z :  

Thus the additional rotation of the fibres caused by the polymer is towards the 1,3 
(flow, vorticity)-plane. From the direction of the Jeffery orbits shown in figure 6 it can 
be seen that this will cause the fibres to drift to orbits away from the 1,2 (flow, 
gradient)-plane and towards the vorticity axis. In the limit when pz and p 3  are small 
compared to l l r ,  the logarithm is cut off by the finite aspect ratio of the fibre. 

For alignments close to the flow direction, the Jeffery rotation rate is approximately 

pi = -pi- pi = -p2p3, 
with solution 

where C is the Jeffery orbit constant (Leal 1975), which varies from 0 (a fibre aligned 
with the vorticity axis) to infinity (a fibre rotating in the (1,2)-plane). 

From (67) the perturbation to p z ,  is of the form 

pi = -2Kp,, (70) 

where K is positive and approximately constant, 

The leading-order contribution to & comes from the 12-component of (A )” ,  and is of 
order pzp3 log ( l/lp21) log ( l/lp31). Unfortunately, pg cannot be simplified in the same 
manner as pg because the k,-integration cannot performed analytically. However, it is 
possible to show that pg has the form 

Pi = KP, P 3 ,  

where K is positive and 

Thus for pz and p 3  of order l / r ,  pg is of order K/rz  and is small in comparison to p: 
provided K/K 4 r.  

The effect of including pi is to change the Jeffery orbit (69) to 

where b = (1 -K2r2)t .  Thus the perturbation to p ,  has two effects. First, the orbit 
constant decrease by a factor of exp (- K Z )  over half an orbit, so that the fibre drifts 
towards the vorticity axis. Second, the period of rotation increases by a factor of l /b .  
For K greater than l / r  the fibre no longer rotates at all in the (1,2)-plane. Instead p2 
tends to a constant negative value, pl, 

pi = - K + ( K ‘ -  l/r2)a, (74) 
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and p3 increases exponentially, so that the fibre will rotate towards the vorticity axis. 
The point p 2  = p", p 3  = 0 is now a position of equilibrium, but it is unstable to 
perturbations in p 3 .  

3.2. Discussion 
The approximations used in deriving the results for this section are valid for high 
Deborah numbers when the polymer responds affinely to the velocity disturbance 
caused by the fibre. The opposite limit of small Deborah number is analysed by Leal 
(1975) using a second-order-fluid model. For small angles away from the (1,3)-plane 
these two different theories predict qualitatively similar behaviour. However, the 
mechanisms which give rise to the non-Newtonian perturbations are quite different. 
The similarity in the motion generated by these two different mechanisms occurs 
because in both cases the induced angular velocity is linear in the disturbance velocity, 
and hence linear in p2 .  

Detailed experimental observations of the motion of fibres suspended in aqueous 
poly-acrylamide have been made by Bartram et al. (1975). They observe that fibres 
drift towards the vorticity axis and that the period of rotation is considerably longer 
than in a Newtonian fluid, in qualitative agreement with both Leal's analysis and our 
small-angle theory. The second-order fluid model requires the existence of a second- 
normal-stress difference to produce a perturbation to the fibre rotation rate. Typically, 
the second-normal-stress difference of a polymer solution is about one tenth of the 
first-normal-stress difference. However, Is0 et al. (1993) observe that fibres also drift 
towards the vorticity axis in polyisobutylene-based Boger fluids, even though these 
fluids have no second-normal-stress difference (Magda et al. 1991). In our anaylsis for 
small angles we find that the drift is proportional to c(A,,),/D. In shear flow (without 
fibres) is constant for linear dumbbells and so the magnitude of this effect would 
decrease with Deborah number. However, in $2 we found that the presence of fibres 
will cause ( A 2 2 ) o  to increase with Deborah number (equation (27)). 

Above a critical shear rate Bartram et al. observe that a fibre placed in the (1,2)- 
plane rotates towards the flow direction and subsequently remains aligned in 
approximately the flow direction until disturbed by a second fibre. Both Leal's and our 
small-angle theory predict that above a critical value of the relevant non-Newtonian 
parameter, in our case K ,  a fibre rotating in the (1,2)-plane will cease to rotate. 
However, the position p3 = 0, pz  = pi is unstable to motion in the p3 direction. From 
(68) ,  the time taken for the fibre to drift away from this position is of order l/lp!( 
(which is of order r ) ,  and so is of the same order as the period of a Jeffery orbit. Thus 
neither theory is able to explain this observation of permanent alignment within the 
parameter range for which they are valid. Our theory would predict a stable fixed point 
if K is permitted to be greater than unity, whereas the equivalent term for a second- 
order fluid is destabilizing. 

More recently, Stover & Cohen (1990) compared the drift between Jeffery orbits for 
fibres suspended in a polyacrylamide/water/glycerine mixture with Leal's theory. By 
choosing the value of the second-normal-stress difference that provided the best fit, 
they found good agreement between experiment and theory. However, they did not 
measure the second-normal-stress difference independently to compare the true value 
with the value that gives the best fit. Our theory could also account for the drift seen 
in these experiments, but does not depend on the second-normal-stress difference. 

Johnson, Salem & Fuller (1990) used optical dichroism to study the orientation of 
suspensions of hematite particles in Boger fluids. The particles were spheroidal in shape 
with aspect ratios between 2.7 and 5.8. For the smallest-aspect-ratio particles ( r  = 2.7), 
the mean direction of orientation in the (1,2)-plane was at a small angle to the flow 
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direction with p z  < 0. This is consistent with the perturbation to p z  given by (67). They 
also studied the motion of these particles in concentrated solutions of monodisperse 
polystyrene. The mean direction of alignment of the particles corresponds to p ,  z 0.25, 
at odds with both theory and the Boger fluid experiments. 

The drift of the fibres towards the vorticity axis has important implications for the 
calculations performed in $2. If a large majority of the fibres are in orbits close to the 
vorticity axis the magnitude of the flow disturbance and consequently of M,,,, will be 
smaller. However, it is expected that fibre-fibre interactions will prevent the fibres from 
becoming completely aligned with the vorticity axis. This is supported by experimental 
measurements of the orientation distribution by Gauthier, Goldsmith & Mason (1971) 
who find that the distribution is shifted towards the vorticity axis compared to a 
Newtonian fluid, but that a proportion of the fibres remain in orbits away from the 
vorticity axis. In recent experiments with semi-dilute suspensions of fibres in a Boger 
fluid, Is0 et al. (1993) find that the orientation distribution of a 0.01 % polyacrylamide 
solution is indistinguishable from that for a Newtonian fluid at the same fibre 
concentration. Fibre-fibre interactions are stronger in a semi-dilute suspension and 
appear to dominate non-Newtonian effects at this concentration. Thus, we would still 
expect to see an increase in extension, but the critical Deborah number may be 
somewhat larger at higher polymer concentrations. 
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support from the Hoechst Celanese Corporation and the Embiricos Foundation at 
Jesus College, Cambridge. 

REFERENCES 

ANCZUROWSKI, E. & MASON, S. G. 1967 Kinetics of flowing dispersions 111. Equilibrium orientations 
of rods and discs. J.  Colloid Interface Sci. 23, 533. 

BARTRAM, E., GOLDSMITH, H. L. & MASON, S. G. 1975 Particle motions in non-Newtonian media 
111. Further observations in elasticoviscous fluids. Rheol. Acta 14, 776. 

BATCHELOR, G. K. 1970 Slender body theory for particles of arbitrary cross-section in Stokes flow. 
J.  Fluid Mech. 44, 419. 

BOGER, D. V. 1977 A highly-elastic constant-viscosity fluid. J .  Non-Newtonian Fluid Mech. 3, 87. 
FRATTINI, P. L., SHAQFEH, E. S. G., LEVY, J. L. & KOCH, D. L. 1991 Observations of axisymmetric 

tracer particle orientation during flow through a dilute fixed bed of fibres. Phys. Fluids A 3,2516. 
GANANI, E. & POWELL, R. L. 1985 Suspensions of rodlike particles: literature review and data 

correlations. J.  Composite Muter. 19, 195. 
GAUTHIER, F., GOLDSMITH, H. L. & MASON, S. G. 1971 The kinetics of flowing dispersions V. 

Orientation distributions of cylinders in Newtonian and non-Newtonian systems. Kolloid-Z. Z .  
Polymere 248, 1000. 

ISO, Y., KOCH, D. L. & COHEN, C. 1993 Orientation of fibers in non-Newtonian fluids subject to 
simple shear. (in preparation). 

JAMES, D. F. & MCCLAREN, D. R. 1975 The laminar flow of dilute polymer solutions through a 
porous media. J .  Fluid Mech. 70, 733. 

JEFFERY, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R.  SOC. 
Lond. A 102, 161. 

JOHNSON, S. J. ,  SALEM, A. J. & FULLER, G. G. 1990 Dynamics of colloidal particles in sheared non- 
Newtonian fluids. J.  Non-Newtonian Fluid Mech. 34, 89. 



Simple shear flow of a suspension of jibres 207 

KITANO, T., FUNABASHI, M., KLASON, C. & KUBAT, J. 1988 Shear flow properties of carbon fibre- 
filled polyethylene melts. Intl Polym. Proc. 111 2, 67. 

KOCH, D. L. & SHAQFEH, E. S. G. 1990 The average rotation rate of a fiber in the linear flow of a 
semidilute suspension. Phys. Fluids A 2, 2093. 

KUHN, W. & KUHN, H. 1945 Bedeutung beschrankt freir drehbarkeit fur die Viskositat und 
Stromungsdoppelbrechung von Fadenmolekellosungen. I. Helv. Chim. Acta 28, 1533. 

LEAL, L. G. 1975 The slow motion of slender rod-like particles in a second order fluid. J .  Fluid Mech. 
69, 305. 

MAGDA, J. J., LOU, J., BAEK, S.-G. & DEVRIES, K. L. 1991 Second normal stress difference of a 
Boger fluid. Polymer 32, 2000. 

PETERLIN, A. 1966 Hydrodynamics of macromolecules in a velocity field with longitudinal gradient. 
J .  Polym. Sci. 4, 287. 

RALLISON, J. M. & HINCH, E. J. 1988 Do we understand the physics in the constitutive equation? 
J.  Non-Newtonian Fluid Mech. 29, 37. 

SHAQFEH, E. S. G. & FREDRICKSON, G. H. 1990 The hydrodynamic stress in a suspension of rods. 
Phys. Fluids A 2, 7. 

SHAQFEH, E. S. G. & KOCH, D. L. 1988a The effect of hydrodynamic interactions on the orientation 
of axisymmetric particles flowing through a fixed bed of spheres or fibers. Phys. Fluids 31, 728. 

SHAQFEH, E. S. G. & KOCH, D. L. 1988 b The combined effects of hydrodynamic interactions and 
Brownian motion on the orientation of particles flowing through fixed beds. Phys. Fluids 31, 
2769. 

SHAQFEH, E. S. G. & KOCH, D. L. 1990 Orientational dispersion of fibers in extensional flows. Phys. 
Fluids A 2, 1017. 

SHAQFEH, E. S. G. & KOCH, D. L. 1992 Polymer stretch in dilute fixed beds of fibres or spheres. J .  
Fluid Mech. 244, 17. 

STOVER, C .  A. & COHEN, C. 1990 The motion of rod-like particles in the pressure driven flow 
between two flat plates. Rkeol. Acra 29, 203. 

STOVER, C. A., KOCH, D. L. & COHEN, C .  1992 Observations of fibre orientation in simple shear 
flows of semi-dilute suspensions. J .  Fluid Mech. 238, 217. 

WARNER, H. R. 1972 Kinetic theory and rheology of finitely extensible dumbbells. Ind. Engng Chem. 
Fundam. 20, 221. 




